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Vehicle routing with time windows is a hard combinatoria
optimization problem with many important applications in
distribution and transportation scheduling.
considerable attention in the last decades and sophésticat
algorithms are now available to find near-optimal solutions

reasonable time. In recent years, attention has shifted-to o
line and/or stochastic versions of the problem. The stdthas
and online versions are motivated by the inherent uncertair%
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Abstract

This paper considers online stochastic multiple ve-
hicle routing with time windows in which requests
arrive dynamically and the goal is to maximize the
number of serviced customers. Contrary to ear-
lier algorithms which only move vehicles to known
customers, this paper investigates waiting and re-
location strategies in which vehicles may wait at
their current location or relocate to arbitrary sites.
Experimental results show that waiting and reloca-
tion strategies may dramatically improve customer
service, especially for problems that are highly dy-
namic and contain many late requests. The deci-
sions to wait and to relocate do not exploit any
problem-specific features but rather are obtained by
including choices in the online algorithm that are
necessarily sub-optimal in an offline setting.

Introduction

ties arising in many industrial problems and technologieal

velopments, such as onboard computers and communicati
systems, which give transportation systems the oppoyttmit

update plans even after the vehicle has been deployed.

In online stochastic problems, customers arrive dynami=

It has reegiv

using a sampling-based approach. Their idea is to generate
scenarios consisting of existing and sampled customers, to
solve the scenarios using large neighborhood sel8bhw,
1994, and to make online decisions based on the scenario so-
lutions. Compared to other online stochastic problems such
as packet schedulingChanget al., 2004* and reservation
systemgBenoistet al., 2001, online stochastic vehicle rout-
ing introduces an additional difficulty: it takes time tosen
request. Indeed serving a request involves moving to the cus
tomer, and then processing the request. In addition, a rout-
ing plan for a scenario may schedule a “sampled” customer
(in contrast to an actual request) on a vehicle, somethiaty th
never occurs in these other applicatioAsw to best proceed
when this situation arisesisthe key issue studied in this paper.
[Bent and Van Hentenryck, 2004took a conservative ap-
proach to this issue: Their algorithm, which is reviewed-sub
sequently, first filters all the “sampled” customers from the
plans, leaving only actual requests. Vehicles, when they be
come idle, are then sent to actual customers, chosen from the
filtered solutions of the scenarios. Apparently, their gesi
| decision was motivated by the fact that sampled customers
may never actually place a request. However, the fact that a
sampled customer is served next in a scenario solution pro-
vides insight into the nature of the uncertainty and sohsgtio
The key contribution of this paper is twopose two novel
strategies, waiting and rel ocation, to addressthisissue and to
better exploit stochastic informationin online vehiclerouting.
The waiting strategy recognizes that itis sometimes baaéfic
or a vehicle to wait at the current location instead of mgvin
49 a known customer. The relocation strategy goes one step
urther and may move vehicles to customer locations where
no requests were placed (yet). These new strategies make
.several fundamental contributions:

cally as the algorithm proceeds and each customer requeste The vehicles can wait or relocate anywhere and at

has a time window during which it can be served. The al-
gorithm must decide whether to accept or reject the request

upon arrival. If it is accepted, the online algorithm mustse

the request. The online algorithm typically has two black-
boxes available to make decisions: an optimization algorit
for the deterministic version of the problem and a condaion

sampling procedure to generate future requests (€bang
et al., 2000; Benoistt al., 2001).

Online stochastic vehicle routing was first studiedBent

any time during the algorithm execution. This con-
trasts with earlier approaches (eldg.arsenet al., 2004,
van Hemert, 2008 where waiting and relocation points
are defined a priori using knowledge of the distribution,
clustering of the customers, and heuristics.

e The decisions of when and where to wait are systemati-
cally derived from stochastic information. Indeed, wait-

1This paper also contains a comparison between online stocha

and Van Hentenryck, 2003; Bent and Van Hentenryck, 2D04ctic optimization and POMDP approaches.



ing and relocation simply make available to the onlineof its customer capacities, i.@(p) = >, ¢(c;). A routing
algorithms decisions that are necessarily sub-optimal implan is a tuple of routeép, ..., p,,) one for each vehicle,

the offline setting. This contrasts with heuristics to dis-in which each customer appears at most once. We also use
tribute waiting time in routing plans (e.glMitrovic-  cust(p) andcust(y) to denote the customers of a rogtand
Minic et al., 2004; Mitrovic-Minic and Laporte, 20Q%  a plany. A routing plan assigns a unique successor and pre-
which do not use stochastic information. decessor for each served customer and depot. For ayplan

- . . itei +
e A decision to wait or relocate solely relies on the sce—f‘he successor of siteis denoted by and the predecessor

nario solutions, not on specific properties of the distribu-"® denoted by~

tion which is used as a black-box. Hence the strategie®eparture Times Routing plans do not prescribe departure
should naturally transfer to a variety of applications.  times for the vehicles. These departure times are typically
uniquely defined: a vehicle may depart at different timemifro

Experimental results show that the waiting and relocatlorg ecific customers and still visit all its assigned cust@mer

strategies may p(;otduce |Qran:atht|r]mpr0t\)/ggne;nts n CﬁSt]?trE efore the deadline. In addition to the routing plan, a sofut
SErvice compared to earlier algorithms, briaging much 81 \ 4 5154 consist of an assignmeat: R — H of starting
gap between the online solution and an offline, a posterior

, : .~ fimes to all customers.
solution where all the uncertainty has been revealed. The im ) ) ) N
provements are particularly impressive for highly dynaimic ~ The Vehicle Routing Problem We are now in position to
stances with many late customers, which are particular chapescribe the vehicle routing problem. A solution to a vehicl
lenging for earlier algorithms. routing problem with time windows (VRPTW) is a routing

The rest of the paper is organized as follows. Sections 2-Blany = (p1, ..., pm) and a starting time assignmensat-

present the offline and online problems. Sections 46 ptesefffying the capacity and time window constraints, i.e.,
the online stochastic algorithm in stepwise refinements; co a(p;) < Q (1<j<m)

X . . . X ;) < <5<
cluding with the waiting and relocation strategies. Setfio () = p(e) < 1(¢) (¢ € cust(7))

presents the problem instances and the experimentalsesult C(v) o(c) > max(e(c),

2 The Offline Problem C,C(rc()c 3;;“;}2 )l(f,)p © Ez 2 zzzimg

The Input Data A vehicle routing problem is specified by The objective is to find a solution maximizing the number

a number of customers that must be visited by a pool of Veyt served customersust(v)|. This objective function dif-

h'.CIPTS' Each customer makes a request thgt must be Ser\.’?éjrs from the optimization criterion used the Solomon bench
within a time window and takes some capacity from the vehi-

le. Each vehicle starts at the depot marks, where the goal is to minimize the number of vehi-
cle. Each vehicle starts at the aepot, serves some customefg, g and, in case of ties, to minimize the total travel time.
and must return to the depot by the deadline.

Each problem contains a sBtof . customers and a depot This highlights the difference between strategic plan@ingd

L ; operational decision making. As maximizing the number of
0. The setS pf sites is thUSR_U .{O}' The travel time betwc_aen served customers is very difficult on the problems consitlere
sitesi andj is denoted byl(i, j). Each request is associated

. X here, the cost associated with relocating or waiting (as fac
with a customer and, since each customer makes at most OR&ad into the travel time) is negligible

request, we use customer and request interchangeably Ever ) _
request: has a demangi(c) > 0 and a service timg(c) > 0. ~ Notations If S is a non-empty sequence|RsT(S) and
Each instance has a poolmfidentical vehicles with capacity LAST(S) denote the first and the last element of a non-empty
Q. Each vehicle starts from the depot. sequence. The concatenation of two sequeﬁe;emds_g is
Each customerhas a time window specified by an interval denoted byS; : 5. If S'is a sequence angi™ is a prefix of
le(c), 1(c)] satisfyinge(c) < I(c). The time window repre- . thenS—S~ denotes the suffi§™ such thats = 5~ : S*.
sents the earliest and latest possible arrival times of @leeh If S is a sequence anli is a setFILTER(S, I?) denotes the
serving customer. In other words, the service for customer Sequence obtained by removing the element8 &bm 5.
¢ may start as early agc) and as late a§c). A customerc
may not be served beforéc) but a vehicle arriving earlyto 3 The Online Problem
servec may wait at the site until time(c) before beginning
service. The depot has a time winddW = [eq, ly], which
represents the earliest departure and latest possibla fetu
the vehicles. Typicallyey, denotes the beginning of the day
andl, is the deadline by which all vehicles must return.

In the online problem, requests arrive dynamically as the al
gorithm proceeds. The online algorithm maintains a par-
tial routing plany~ = (p7,...,p,,) consisting of a par-

tial route p; for each vehiclei. It also maintains a par-

tial assignmentz— of starting times for all customers in
Routing Plans Optimization algorithms for vehicle routing cust(y~) \ {LAST(p1),...,LAST(pm)}. These times spec-
typically return a routing plan that specifies the order inalth  ify when the vehicle serving a given customer has departed
each vehicle visits its customers. A vehicle route, or réoite  to the next customer on the same vehicle. The last customers
short, starts at the depot, serves some customers, andgetuon the vehicles have no departure times, since they have not
to the depot. A customer appears at most once on a routbeen served yet.

Hence a route is a sequengecy, . . ., c,, 0), wherec; € R The online algorithms have at their disposal an optimiza-
and all¢; are distinct. The capacity of a rougeis the sum tion algorithm©. Given a set of customer requesgtsand



ONLINE ALGORITHM A((Ry, ..., Rn)) CHOOSEREQUESTFC(p:, R, T)

1 po— () 1 F—U_, Rs;

2 09— 0y 2 forreF

3 T « GENERATESOLUTIONS(pg, 09, R1); 3 do f(r) « 0;

4 forte H 4 forpel

5 doA; «— ACCEPTREQUESTSp—1,0¢—1, Rt, At—1,1); 5 dor — FIRST(FILTER(p — py, F));

6 ' < UPDATEPLANS(p—1,0¢-1, Ag, I'); 6 f(r) — f(r)+1;

7 if IDLE(p¢—1,0¢-1) 7 return argmax(r € F) f(r);

8 then s; « CHOOSEREQUEST(p;—_1, A¢, I'); i ] ) )

9 Pt — i1 : St Figure 2: Consensus for Online Stochastic Routing.

10 _1[LAST(ps— t]; .

11 1(:“(__ {U; el[l“ | F(I’;;S%() pt p]’ )= 50 }; determines whether to accept any new requests that have ar-
12 else pr ) =1 th rived. Next those plans that cannot accommodate the new
13 gi - ff[ll’- accepted request4; (line 6) are removed from. It is im-

portant to stress that a least one pjag IT" should be able
to accommodate the requests4n (through insertion or re-
placement of an equivalent sampled customer) since other-
GENERATESOLUTIONS(p1, 01, Ay wise the algo_rithm cannot provide the necessary servige gua
T 0 L antees. In _thls paper, customers are accepted greedﬂytwhe_n
repeaf ever a routing plan can acco_mmpdat_e them. Using stp_chastlc
R — SAMPLE(t): !nformatlon for acceptlng/(eject|ng did not l:_mng signéfitt
I —TU{O(p ’Ut Ay R)); improvements. The_ algorithm then_det_ermlnes whether the
Ty ' vehicle is idle, that is whether service is completed for the

14 I' = T" U GENERATESOLUTIONS(pt, 0¢, At);
15 return (pp,on);

OO WNE

retﬁ?glﬁl,met +1 last customer i1 give.n the depa}rt.ure times .. .If
’ the vehicle is busy traveling or servicing the last customer
Figure 1: Online Stochastic Routing pi—1, the routing plan and departure times remain the same
(lines 12—-13) and the algorithm simply continues genegatin
apair(y~,07), O(y~,07, R) returns a routing plan™ = plans (line 14). Otherwise, the vehicle is idle and the algo-
{py : pfse ooy pit) maximizing|cust(y)| and satisfy-  rithm chooses a request to serve using the plans in (line

ing C~(y*), whereC~ denotes the problem-specific con- 8), augments the routing plan (line 9) and the departurestime
straintsC' where the time windows of each customem  (line 10), and updateE to remove the plans incompatible
cust(y~) \ {LAsT(p1),...,LAST(py)} have been tightened with the decisions (line 11). Itis useful to review some & th
to [c~(¢),0~(¢)]. The online algorithms also use a proce- details of the algorithm.

duresAMPLE(t) to conditionally sample the request distribu-
tion from timet to the time horizon.

The rest of this paper describes the online stochastic algo-

e a vehicle is idle at time for a plan(sy, ..., sx) and
departure times if

rithms in stepwise refinements using the algorithmEBent k =0V max(o(sk—1)+d(sk—1, k), e(sk))+p(sx) < L.

and Van Hentenryck, 200}as a basis to clearly identify our L .

contributions. The algorithms are presented for a single ve !N other words, a vehicle is idle when its route has no

hicle, their generalization to multiple vehicles beingaibed customers or when it has finished serving its last cus-

naturally using pointwise decisiof8ent and Van Henten- tomers, by timet.

ryck, 20044 e The algorithm assigns the departure time of the last cus-
tomer inp;_; to timet in line 10. The vehicle thus de-

4 Online Vehicle Routing parts for customes, at timet.

We now present the generic online routing algorithm. Since ® A routing planp that nextvisits a customer other than

there is only one vehicle, a routing plan is simply the vehi- ~ Must be removed from since its decisions are incom-
cle route and we use both terms interchangeably. The generic ~ Patible withp; (line 11).
online algorithm is depicted in Figure 1. It maintains a det o Figure 1 also depicts how to generate plans. Line 3 of func-
plansI’ representing scenario solutions that are used to makéon GENERATESOLUTIONS generates a scenario by sam-
decisions over the course of the computation. At every timepling the distribution from timet to the horizon (the time
t, the algorithm also maintains a partial routing planits  in which the vehicles must return to the depot). Line 4
associated departure times, and R, the requests that be- calls the optimization algorithm with the routing plan and
come available. Finally, the algorithm assumes that thefset departure times at timé. It remains to specify how to
requestsi; is available before the start of the computation.make decisions. Figure 2 shows how to implement function
The implementation also includes service guarantees: @ncecHOOSEREQUESTt0 obtain the consensus algoritiihfrom
request is accepted, it must be served. [Bent and Van Hentenryck, 2000dhere the details can be
Lines 1-2 initialize the partial routing plan and the depar-found. AlgorithmC considers all known requesis (line 1)
ture times, while line 3 generates the initial set of plaredus and initializes their evaluations (lines 2-3). It then ddess
in the decisions. The body of the algorithm (lines 5-15) firsteach routing plap € T (line 4), retrieves the request served



CHOOSEREQUESFCW(p;, A, T) CHOOSEREQUESTFCR(p;, A¢,T)

1 F« U';:l A;; 1 for r € Customers

2 forre FU{Ll} 2 do f(r) « 0;

3 do f(r) « 0; 3 forperl

4 forpel 4 dor « FIRST(p — pr);

5 dor « FIRST(p — p;); 5 f(r) < f(r)+1;

6 ifreF 6 return argmax(r € Customers) f(r);

g tefllgg J;ET):f;(j-Tj’l Figure 4: Consensus with a Relocation Strategy.

9 return ar!jmax(r € FU {L}i) fir); Mitrovic-Minic and Laporte, 2004. The beauty in the al-

. ] } N gorithm presented here is that the choice of when and where
Figure 3: The Consensus Algorithm with a Waiting Strategy.to wait is fully automatic and guided by the scenarios.

nextinp, and increments its credit (line 6). The requeskin

with the best evaluation is selected in line 7. 6 A Relocation Strategy
It is important to emphasize a critical point in this imple- e waiting strategy recognizes that it may be beneficial to
mentation. A solution € I'is a routing plarp = pi_1 : p wait at the current location instead of serving an accepted

starting with partial routg, _, followed by a sequence of re- request. It is especially appropriate for problems in which
quests coming fron#” and the sampling. As a consequence,he pottleneck is to minimize travel times and it is reason-
there is no guarantee t+hat_the requeserved next on the ve-  gpiy easy to serve the customers. When the challenge is in
hicle, i.e.,s = FIRST(p"), is an actual request (€ F), ot maximizing the number of served requests, it is appealing to
a sampled customes (¢ F). This is piemsely why the im- oy piore a relocation strategy and to consider moving to the
plfmentatlon in Figure 2 us@sLTER(p™", F') to prune plan  |scation of sampled customers. Once again, the difficulty is
p" and keep o+nly the requests . This guarantees that 1, getermine when and where to move. Figure 4 proposes a
FIRST(FILTER(p™, I)) returns a real customer and that the naqra| relocation strategy. Its fundamental idea is tdcavo

vehicle departs for a customer who requested service. differentiating between accepted and sampled custontes: t
. vehicle simply moves to the request with the best evaluation
5 A Waiting Strategy Lines 1-2 initialize the evaluation of all customers, lides

The algorithm by[Bent and Van Hentenryck, 2001filters 5_increments the firs_t request, and line 6 selects the request
sampled customers before selecting the request. ThiseonsdVith the best evaluation. The selected request may be either
vative approach ensures that the vehicle always moves to @) accepted or a sampled request. _ .

known customer, not a sampled request. This section investi A relocation strategy may be beneficial for improving the
gates a waiting strategy based on the recognition that it mafumber of served requests because it anticipates future re-
be beneficial for the vehicle to wait at its current location i quests and positions the vehicle to serve them quickly. It is
stead of serving customers too eagerly. For instance, the fanever advantageous when minimizing travel times, since it
that the solution to a scenario at timestarts with a sampled May move to locations where no requests will ever materi-

customer, that is alize. Observe also that when and where to relocate is also
N N fully automatic and systematically derived from the scenar
p=pi-1:p" A FIRST(p") & F, solutions. This contrasts with other approaches (E.grsen

indicates that it may be beneficial to wait since the sample(?r :;fe%jol?;hvineﬂr?gggtbiggmﬂ26 rﬁg'ﬁﬁﬁgﬁ%gﬁg&ﬁﬂ?ﬁ
request may materialize, in which case it must be served b%ific roblemgs instances. and distribputions
fore the first accepted customer. The difficulty is to decide P ' K '
when to wait in a systematic fashion given that the algorithm

has solved multiple scenarios, all of which may have differ-7 Experimental Results

ent customers to serve next in their routing plans. Figure ?We now describe the experiments that compare our algo-

dep|cts a natural implementation. Its key idea is to a_\dd & wal o\ vith those ofBent and Van Hentenryck, 200kc
action | to the accepted requests. When considering a plan

p € T, the algorithm retrieves the requesto serve next The Benchmarks The online vehicle-routing problems are

in the scenario (line 5). In the case of an accepted requegenerated from the Solomon benchmd&slomon, 198), a

(r € F), the evaluation of is incremented. Otherwise,iifis  collection of very challenging vehicle-routing problemihw

a sampled customer ¢ F'), the evaluation of the wait action 100 customers, many of which have yet to be solved opti-

is incremented. The implementation then selects the elememally. The stochastic versions were developedi®gnt and

of F U { L} with the best evaluation, which may be either anVan Hentenryck, 2004avhere the details are found. We re-

accepted request or the wait action. The online generie routview the salient features of these benchmarks. The problems

ing algorithm must also be generalized slightly to wait. Whe are divided into classes 1 through 5. The degree of a dy-

the request is the wait action, the algorithm modifies neithenamism (DOD) of a problem is the ratio of the number of

the routing plan nor the departure times. stochastic customers over the number of total customeses. Th
Waiting heuristics have attracted considerable attentiomlass 1 problems are characterized by early arriving reégques

recently (see, for instancdMitrovic-Minic et al., 2004; and class 2 problems by more late arriving requests. The thir



class mixes class 1 and 2. For these three classes, the av Classes 1 - 5 - Regret
age DOD is 4%. Class 4 considers problems with more late

arriving customers than class 2 and have an average DOD 1 * b
59%. Class 5 considers problems with a higher proportiorn *
of stochastic customers, i.e. an average DOD 6% 8In all £ j s | ¢+ LO
problems, the expected number of customers is 100. § 1: X Ew

3 . kY A
The Algorithms The results compare local optimization % 10 : > ’ Eﬁear(m)
(LO) with the consensus and regret algorithms which may inj ¢ ¢ o > . '._ % Linear (R)
clude the waiting and relocation strategies. Algorithm IO i | § P TI ——=—t = |* - Linear(RW)
a generalization of the parallel tabu-search algorithiGien- | 5 o [y *padiies <ous’ ey |7 Linear (RR)
dreauet al., 1999. It generates multiple routing plans on the 2 4 2273 ‘1?'—:21** T T
accepted customers. These plans are then used to accepl ° 2 *1 330 L

.34 0.44 0.54 0.64 0.74 0.84

reject new customers and to select the decisions at each tin

step. LO is thus close to algorithth the main difference Degree of Dynamism

being that no stochastic information is exploited. The con- Figure 5: Unserviced Customers for Regret.
sensus algorithms, CW, andCR have been fully described
in this paperc is the algorithm originally proposed Bgent Classes 1-5 - Consensus

and Van Hentenryck, 2005avhile CVW andCR respectively 20
include the waiting and relocation strategies. The redret a
gorithms, R, RW, andR'R, improved upon the consensus

. . . . . . [4 + LO
algorithms by using a sub-optimality approximation to eval | c
uate the value of scheduling each request next on the veh £ L cW
cles and are described in detailBent and Van Hentenryck, | & e CR
2004H. They use a simple and fast sub-optimality approx- $ Linear (LO)
imation whose details are described[Bent et al., 2004. g - - EEZZIE?W)
Consider the decision of choosing which customer to serv § ~~~~~~~~~~~~ Linear (CR)

next on vehicle) and lets; be the next customer on the route
of vehiclev at timet. To evaluate the regret of another cus- ‘ ‘ ‘ ‘ ‘
tomerr on the same vehicle, the sub-optimality approxima- 3.00% 4400% 5400% 64.00% 74.00%  84.00%
tion determines whether there is a feasible swap afids; Degree of Dynamism

on v, in which case the regret is zero. Otherwise, if such a
swap violates the time-window constraints, the regret is 1.

Initial Plans and Online Process The online stochastic al- DOD grows. The improvement ov& is significant, indicat-
gorithms generate and solve 50 scenarios to select the dedd the importance of using relocation on this set of inséanc
sions at time 0. The algorithms also generate and solve spUbsequentresults will characterize more precisely when t
additional samples to create plans given the set of desision '€location strategy is of paramount importance. Algorithm
time 0. As these scenarios are generated and solved ahead/dlY 1S @lso quite effective in general, but it is dominated by
time, the number of scenarios can be arbitrarily large dépen R'R as the DOD increases. Similar results can be observed

ing on the application. Each such optimization is allocated©r the consensus algorithrdsC)V, andCR but, in general,
one minute. During the online execution, each optimizatiorf"€Y Serve fewer customers than their regret counterparts.

runs for 10 seconds and uses the LNS procedure [BiTaw,  Results on Class 4 Figure 7 depicts the results on class 4.
1994. All algorithms are executed on an AMD Athlon 64 \ve highlight the best and second best result for each problem
3000 processor with 512MB of RAM running Linux. Each jn holdface and italics respectively. AlgorithrRR andRW

of the instances is run 50 times to account for the nondetelzre reasonably close. For small DOD& performs the best,
ministic nature of the algorithms. In the results, we ofterito

the words “in the average” for brevity.

Figure 6: Unserviced Customers for Consensus.

DOD LO C cw CR R RW RR
. . 101-1 | 46.3% | 2.08 | 224 | 4.16 3.30 | 194 3.72 2.68
The Results Figures 5 and 6 summarize all the results for 1012 | 458% | 678 | 542 | 594 | 362 | 350 | 418 | 344

i i 101-3 | 50.0% | 3.06 | 2.06 3.06 2.28 | 1.66 3.46 3.42
the regret and consensus algorithms regarding the number of | 107 | 2560 | 500 | 516 | 230 | 554 | 328 | 286 | 228

unserviced customers. (All customers can be served in the | 1015 | 47.4% | 770 | 402 | 548 | 512 | 338 | 582 | 458
102-1 59.0% 1.74 1.78 1.22 0.54 0.92 1.10 1.34

offline, a po_s_te_riori problems.) 'I_'he figures d_epict the rssul 1022 | 2750 | 228 | 194 | 32 | 2798 | 212 | 286 | 260
for the specific instances and a linear regression for eads cl 102-3 | 56.0% | 870 | 324 | 506 | 332 | 338 | 414 | 324
. g 102-4 52.0% 2.18 0.92 148 1.84 1.64 1.96 1.78

of algorithms. Some specific results are cropped by the graph | 1025 | 576% | 376 | 246 | 290 | 202 | 152 | 268 | 228
1 ini il i i 104-1 76.1% 211 19.7 14.4 13.8 8.64 111 11.4

extent to maintain its readability. The main result is the-ou W ekl 2l 19T 19e | 138 860 1| 114
standing behavior dRR, i.e., the regret algorithm with a re- 1043 | 761% | 209 | 166 | 104 | 884 | 788 | 7.80 | 9.06
H i i i 104-4 | 72.2% 19.6 193 141 6.36 9.80 8.74 7.38
location strategy. From the interpolations, it can be skah t 1005 | vazoe | 159 | 190 | 140 | ooa | 127 | 101 | 892

algorithmRR dominates all the algorithms for DODs over
50% and that the improvements increase substantially as the Figure 7: Unserviced Customers on Class 4.



DOD LO C [%% CR R RW RR
101-1 75.4% 5.26 452 4.82 2.96 3.20 4.54 2.28 References
- 0 . .
1013 | 607 | 222 | 236 | 276 | 28 | 120 | 216 | 152 [Benoistet al., 2001 T. Benoist, E. Bourreau, Y. Caseau,
101-4 | 71.7% | 390 | 614 | 206 | 156 | 372 | 248 | 124 and B. Rottembourg. Towards Stochastic Constraint Pro-
101-5 76.3% 6.14 5.56 6.54 6.00 4.66 5.98 3.36 . ) . . .
102-1 | 77.2% | 456 | 236 | 240 | 140 | 150 | 236 | 148 gramming: A Study of On-line Multi-Choice Knapsack
102-2 86.7% 5.88 5.38 2.54 2.54 3.30 3.52 2.56 i i . _
102-3 81.4%: 3.84 2.40 1.06 0.16 1.72 0.84 0.40 Wlth Deadllnes' IrCP 01’ 61 76’ 2001
1025 | goan | 132 | 138 | 15 | o7 | 122 | 118 | oe2 [Bent and Van Hentenryck, 20DR. Bent and P. Van Hen-
1041 | 89.4% | 253 | 209 | 230 | 876 | 201 | 153 | 812 tenryck. Dynamic Vehicle Routing with Stochastic Re-
= . 0 . . - . B 3 . i)
104-3 | 89.1% | 263 | 27.3 | 195 | 7.88 | 245 | 120 | 6.98 quests. I1JCAI’ 03, 2003.
104-4 89.7% 30.2 31.2 22.0 12.4 33.9 114 7.44
1045 | 870% | 227 | 318 | 183 | 106 | 283 | 774 | 366 [Bent and Van Hentenryck, 2004&. Bent and P. Van Hen-
_ _ tenryck. Online Stochastic and Robust Optimization. In
Figure 8: Unserviced Customers on Class 5. AS AN-04, 286-300, 2004.

however, what is noteworthy is the significant g&lfR and ~ [Bent and Van Hentenryck, 2004tR. Bent and P. Van Hen-
RW show as the DOD increases. These results show the sig- tenryck. Regrets Only! Online Stochastic Optimization
nificance of the waiting and relocation strategies on class 4 Under Time Constraints. IAAAI-04, 501-506, 2004.

Observe that LO misses more than 25 customers on instan¢gent and Van Hentenryck, 2004®. Bent and P. Van Hen-
rc104- 2, while only about 10 customers are not served by  tenryck. Scenario-Based Planning for Partially Dynamic
RR. Their consensus counterparts also behave well. Vehicle Routing with Stochastic Customer8perations
Results on Class 5 Class 5 contains the most difficult in- Research, 52 (6):977-987, 2004.
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